401 research outputs found

    4D Multi-atlas Label Fusion using Longitudinal Images

    Full text link
    Longitudinal reproducibility is an essential concern in automated medical image segmentation, yet has proven to be an elusive objective as manual brain structure tracings have shown more than 10% variability. To improve reproducibility, lon-gitudinal segmentation (4D) approaches have been investigated to reconcile tem-poral variations with traditional 3D approaches. In the past decade, multi-atlas la-bel fusion has become a state-of-the-art segmentation technique for 3D image and many efforts have been made to adapt it to a 4D longitudinal fashion. However, the previous methods were either limited by using application specified energy function (e.g., surface fusion and multi model fusion) or only considered tem-poral smoothness on two consecutive time points (t and t+1) under sparsity as-sumption. Therefore, a 4D multi-atlas label fusion theory for general label fusion purpose and simultaneously considering temporal consistency on all time points is appealing. Herein, we propose a novel longitudinal label fusion algorithm, called 4D joint label fusion (4DJLF), to incorporate the temporal consistency modeling via non-local patch-intensity covariance models. The advantages of 4DJLF include: (1) 4DJLF is under the general label fusion framework by simul-taneously incorporating the spatial and temporal covariance on all longitudinal time points. (2) The proposed algorithm is a longitudinal generalization of a lead-ing joint label fusion method (JLF) that has proven adaptable to a wide variety of applications. (3) The spatial temporal consistency of atlases is modeled in a prob-abilistic model inspired from both voting based and statistical fusion. The pro-posed approach improves the consistency of the longitudinal segmentation while retaining sensitivity compared with original JLF approach using the same set of atlases. The method is available online in open-source

    Improved Stability of Whole Brain Surface Parcellation with Multi-Atlas Segmentation

    Full text link
    Whole brain segmentation and cortical surface parcellation are essential in understanding the anatomical-functional relationships of the brain. Multi-atlas segmentation has been regarded as one of the leading segmentation methods for the whole brain segmentation. In our recent work, the multi-atlas technique has been adapted to surface reconstruction using a method called Multi-atlas CRUISE (MaCRUISE). The MaCRUISE method not only performed consistent volume-surface analyses but also showed advantages on robustness compared with the FreeSurfer method. However, a detailed surface parcellation was not provided by MaCRUISE, which hindered the region of interest (ROI) based analyses on surfaces. Herein, the MaCRUISE surface parcellation (MaCRUISEsp) method is proposed to perform the surface parcellation upon the inner, central and outer surfaces that are reconstructed from MaCRUISE. MaCRUISEsp parcellates inner, central and outer surfaces with 98 cortical labels respectively using a volume segmentation based surface parcellation (VSBSP), following a topological correction step. To validate the performance of MaCRUISEsp, 21 scan-rescan magnetic resonance imaging (MRI) T1 volume pairs from the Kirby21 dataset were used to perform a reproducibility analyses. MaCRUISEsp achieved 0.948 on median Dice Similarity Coefficient (DSC) for central surfaces. Meanwhile, FreeSurfer achieved 0.905 DSC for inner surfaces and 0.881 DSC for outer surfaces, while the proposed method achieved 0.929 DSC for inner surfaces and 0.835 DSC for outer surfaces. Qualitatively, the results are encouraging, but are not directly comparable as the two approaches use different definitions of cortical labels.Comment: SPIE Medical Imaging 201

    Opportunities for Mining Radiology Archives for Pediatric Control Images

    Full text link
    A large database of brain imaging data from healthy, normal controls is useful to describe physiologic and pathologic structural changes at a population scale. In particular, these data can provide information about structural changes throughout development and aging. However, scarcity of control data as well as technical challenges during imaging acquisition has made it difficult to collect large amounts of data in a healthy pediatric population. In this study, we search the medical record at Vanderbilt University Medical Center for pediatric patients who received brain imaging, either CT or MRI, according to 7 common complaints: headache, seizure, altered level of consciousness, nausea and vomiting, dizziness, head injury, and gait abnormalities in order to find the percent of studies that demonstrated pathologic findings. Using a text-search based algorithm, we show that an average of 59.3% of MRI studies and 37.3% of CT scans are classified as normal, resulting in the production of thousands of normal images. These results suggest there is a wealth of pediatric imaging control data which can be used to create normative descriptions of development as well as to establish biomarkers for disease.Comment: MASI Brief Repor

    Less is More: Simultaneous View Classification and Landmark Detection for Abdominal Ultrasound Images

    Full text link
    An abdominal ultrasound examination, which is the most common ultrasound examination, requires substantial manual efforts to acquire standard abdominal organ views, annotate the views in texts, and record clinically relevant organ measurements. Hence, automatic view classification and landmark detection of the organs can be instrumental to streamline the examination workflow. However, this is a challenging problem given not only the inherent difficulties from the ultrasound modality, e.g., low contrast and large variations, but also the heterogeneity across tasks, i.e., one classification task for all views, and then one landmark detection task for each relevant view. While convolutional neural networks (CNN) have demonstrated more promising outcomes on ultrasound image analytics than traditional machine learning approaches, it becomes impractical to deploy multiple networks (one for each task) due to the limited computational and memory resources on most existing ultrasound scanners. To overcome such limits, we propose a multi-task learning framework to handle all the tasks by a single network. This network is integrated to perform view classification and landmark detection simultaneously; it is also equipped with global convolutional kernels, coordinate constraints, and a conditional adversarial module to leverage the performances. In an experimental study based on 187,219 ultrasound images, with the proposed simplified approach we achieve (1) view classification accuracy better than the agreement between two clinical experts and (2) landmark-based measurement errors on par with inter-user variability. The multi-task approach also benefits from sharing the feature extraction during the training process across all tasks and, as a result, outperforms the approaches that address each task individually.Comment: Accepted to MICCAI 201

    Reproducibility Evaluation of SLANT Whole Brain Segmentation Across Clinical Magnetic Resonance Imaging Protocols

    Full text link
    Whole brain segmentation on structural magnetic resonance imaging (MRI) is essential for understanding neuroanatomical-functional relationships. Traditionally, multi-atlas segmentation has been regarded as the standard method for whole brain segmentation. In past few years, deep convolutional neural network (DCNN) segmentation methods have demonstrated their advantages in both accuracy and computational efficiency. Recently, we proposed the spatially localized atlas network tiles (SLANT) method, which is able to segment a 3D MRI brain scan into 132 anatomical regions. Commonly, DCNN segmentation methods yield inferior performance under external validations, especially when the testing patterns were not presented in the training cohorts. Recently, we obtained a clinically acquired, multi-sequence MRI brain cohort with 1480 clinically acquired, de-identified brain MRI scans on 395 patients using seven different MRI protocols. Moreover, each subject has at least two scans from different MRI protocols. Herein, we assess the SLANT method's intra- and inter-protocol reproducibility. SLANT achieved less than 0.05 coefficient of variation (CV) for intra-protocol experiments and less than 0.15 CV for inter-protocol experiments. The results show that the SLANT method achieved high intra- and inter- protocol reproducibility.Comment: To appear in SPIE Medical Imaging 201

    Learning Implicit Brain MRI Manifolds with Deep Learning

    Full text link
    An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease or markers of development in populations. Having a lowdimensional manifold of an image allows for easier statistical comparisons between groups and the synthesis of group representatives. Previous studies have sought to identify the best mapping of brain MRI to a low-dimensional manifold, but have been limited by assumptions of explicit similarity measures. In this work, we use deep learning techniques to investigate implicit manifolds of normal brains and generate new, high-quality images. We explore implicit manifolds by addressing the problems of image synthesis and image denoising as important tools in manifold learning. First, we propose the unsupervised synthesis of T1-weighted brain MRI using a Generative Adversarial Network (GAN) by learning from 528 examples of 2D axial slices of brain MRI. Synthesized images were first shown to be unique by performing a crosscorrelation with the training set. Real and synthesized images were then assessed in a blinded manner by two imaging experts providing an image quality score of 1-5. The quality score of the synthetic image showed substantial overlap with that of the real images. Moreover, we use an autoencoder with skip connections for image denoising, showing that the proposed method results in higher PSNR than FSL SUSAN after denoising. This work shows the power of artificial networks to synthesize realistic imaging data, which can be used to improve image processing techniques and provide a quantitative framework to structural changes in the brain.Comment: SPIE Medical Imaging 201

    A Data Colocation Grid Framework for Big Data Medical Image Processing - Backend Design

    Full text link
    When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a backend interface application program interface design for Hadoop & HBase for Medical Image Processing. The API includes: Upload, Retrieve, Remove, Load balancer and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine, which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a na\"ive scheme when datasets are relative small.Comment: Accepted and awaiting publication at SPIE Medical Imaging, International Society for Optics and Photonics, 201

    Spatially Localized Atlas Network Tiles Enables 3D Whole Brain Segmentation from Limited Data

    Full text link
    Whole brain segmentation on a structural magnetic resonance imaging (MRI) is essential in non-invasive investigation for neuroanatomy. Historically, multi-atlas segmentation (MAS) has been regarded as the de facto standard method for whole brain segmentation. Recently, deep neural network approaches have been applied to whole brain segmentation by learning random patches or 2D slices. Yet, few previous efforts have been made on detailed whole brain segmentation using 3D networks due to the following challenges: (1) fitting entire whole brain volume into 3D networks is restricted by the current GPU memory, and (2) the large number of targeting labels (e.g., > 100 labels) with limited number of training 3D volumes (e.g., < 50 scans). In this paper, we propose the spatially localized atlas network tiles (SLANT) method to distribute multiple independent 3D fully convolutional networks to cover overlapped sub-spaces in a standard atlas space. This strategy simplifies the whole brain learning task to localized sub-tasks, which was enabled by combing canonical registration and label fusion techniques with deep learning. To address the second challenge, auxiliary labels on 5111 initially unlabeled scans were created by MAS for pre-training. From empirical validation, the state-of-the-art MAS method achieved mean Dice value of 0.76, 0.71, and 0.68, while the proposed method achieved 0.78, 0.73, and 0.71 on three validation cohorts. Moreover, the computational time reduced from > 30 hours using MAS to ~15 minutes using the proposed method. The source code is available online https://github.com/MASILab/SLANTbrainSegComment: To appear in MICCAI201

    Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury

    Full text link
    Machine learning models are becoming commonplace in the domain of medical imaging, and with these methods comes an ever-increasing need for more data. However, to preserve patient anonymity it is frequently impractical or prohibited to transfer protected health information (PHI) between institutions. Additionally, due to the nature of some studies, there may not be a large public dataset available on which to train models. To address this conundrum, we analyze the efficacy of transferring the model itself in lieu of data between different sites. By doing so we accomplish two goals: 1) the model gains access to training on a larger dataset that it could not normally obtain and 2) the model better generalizes, having trained on data from separate locations. In this paper, we implement multi-site learning with disparate datasets from the National Institutes of Health (NIH) and Vanderbilt University Medical Center (VUMC) without compromising PHI. Three neural networks are trained to convergence on a computed tomography (CT) brain hematoma segmentation task: one only with NIH data,one only with VUMC data, and one multi-site model alternating between NIH and VUMC data. Resultant lesion masks with the multi-site model attain an average Dice similarity coefficient of 0.64 and the automatically segmented hematoma volumes correlate to those done manually with a Pearson correlation coefficient of 0.87,corresponding to an 8% and 5% improvement, respectively, over the single-site model counterparts

    Estimated Incidence of Ophthalmic Conditions Associated with Optic Nerve Disease in Middle Tennessee

    Full text link
    Aims. The objective of this paper is to determine the incidence of ophthalmic disease potentially leading to optic nerve disease in Middle Tennessee. Methods. We use a retrospective population-based incidence study design focusing on the population of middle Tennessee and its nearby suburbs (N=3 397 515). The electronic medical records for all patients evaluated or treated at a large tertiary care hospital and clinics with an initial diagnosis of a disease either affecting the optic nerve, or potentially associated with optic nerve disease, between 2007 and 2014 were retrieved and analyzed. Results. 18 291 patients (10 808 F) with 18 779 incidence events were identified with an age range of 0-101 years from the query of the Vanderbilt BioVU. Estimated age-adjusted incidence per 100 000 population per year was 198.4/145.1 (glaucoma F/M), 14.4/11.4 (intrinsic optic nerve disease F/M), 10.6/5.8 (optic nerve edema F/M), 6.1/6.6 (orbital inflammation F/M), and 23.7/6.7 (thyroid disease F/M). Glaucoma incidence was strongly correlated with age with the incidence sharply increasing after age 40. Optic nerve edema incidence peaked in the 25-34 old females. African American population has increased likelihood of glaucoma, orbital inflammation, and thyroid disease. Conclusions. Mapping the incidence of pathologies of the optic nerve is essential to the understanding of the relative likelihood of these conditions and impacts upon public health. We find incidence of optic nerve diseases strongly varies by gender, age, and race which have not been previously studied using a unified framework or within a single metropolitan populatio
    corecore